The inhibition of cocaine-induced locomotor activity by CART 55-102 is lost after repeated cocaine administration

نویسندگان

  • Martin O. Job
  • Li L. Shen
  • Michael J. Kuhar
چکیده

CART peptide is known for having an inhibitory effect on cocaine- and dopamine-mediated actions after acute administration of cocaine and dopamine. In this regard, it is postulated to be a homeostatic, regulatory factor on dopaminergic activity in the nucleus accumbens (NAc). However, there is no data on the effect of CART peptide after chronic administration of cocaine, and this study addresses this. It was found that CART peptide blunted cocaine-induced locomotion (LMA) after acute administration of cocaine, as expected, but it did not affect cocaine-mediated LMA after chronic administration of cocaine. The loss of CART peptide's inhibitory effect did not return for up to 9 weeks after stopping the repeated cocaine administration. It may not be surprising that homeostatic regulatory mechanisms in the NAc are lost after repeated cocaine administration, and that this may be a mechanism in the development of addiction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity.

Evidence suggests that CART (cocaine-amphetamine regulated transcript) peptides are mediators or modulators of the actions of psychostimulant drugs. In this study, the effects of intra-accumbal injections of rat long form (rl) CART 55-102 were examined. Injection of the peptide alone had no effect, but pretreatment with the peptide blunted or reduced the locomotor-inducing effects of cocaine af...

متن کامل

Predominant D1 Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The...

متن کامل

Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction

The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, ...

متن کامل

Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons.

Administration of cocaine and amphetamine increases cocaine- and amphetamine-regulated transcript (CART) expression in the rat striatum (Douglass et al., 1995). CART mRNA is highly expressed in different parts of the human and rat brain, including hippocampus (Douglass et al., 1995; Couceyro et al., 1997; Kuhar and Yoho, 1999; Hurd and Fagergren, 2000). The presence of CART peptide 55-102 immun...

متن کامل

Individual differences in cocaine-induced locomotor sensitization in low and high cocaine locomotor-responding rats are associated with differential inhibition of dopamine clearance in nucleus accumbens.

Behavioral sensitization to cocaine reflects neuroadaptive changes that intensify drug effects. However, repeated cocaine administration does not induce behavioral sensitization in all male Sprague-Dawley rats. Because cocaine inhibits the dopamine (DA) transporter (DAT), we investigated whether altered DAT function contributes to these individual differences. Freely moving rats had electrochem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience Letters

دوره 550  شماره 

صفحات  -

تاریخ انتشار 2013